Input voltage	Output voltage	Output current	Output power	Efficiency	Size
18-90V DC	12V DC	20 Amps	240 Watts	93.5%	74*74*32mm

The RW-992 is a Non-isolated DC-DC converter that uses a synchronous rectification technology, and features high efficiency and power density. It has the dimensions of 74mm x 74mm x 32mm (2.91 in. x 2.91 in. x 1.26 in) and provides the rated output voltage of 12V and the maximum output current of 20A.

Features

- Design meeting RoHS / CE
- \bullet High efficiency: 93.5% (@ 72Vin, 25°C)
- Import capacitors, high reliability
- Output transient absorption protection
- Support -40 °C environment
- 100% full load burn-in test
- Short circuit, Over load, Over temperature protections
- Remote ON/OFF control (optional)
- Waterproof level IP67

Applications

- Industrial
- Alternative Energy
- Golf Cart
- Forklift
- Electromotor
- Telecommunications
- Boat & Yacht
- Medical
- LED Marketplaces and so on.

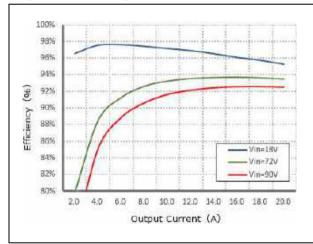
Model naming method

RW-992

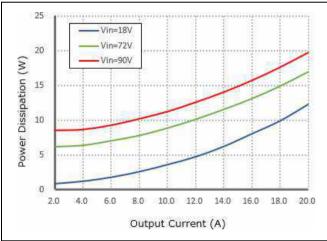
- : "ROBOWAY" company name
- **72** : Input rated voltage
- S : Single output type
- 12 : Output voltage
- 20 : Output current

Electrical Specifications

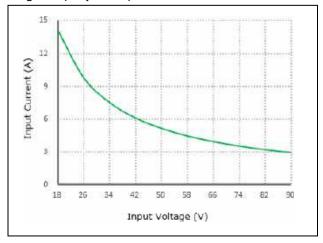
Conditions: TA = 25 °C (77°F), Airflow = 1 m/s (200LFM), Vin =72V, Vout =12V, unless otherwise specified.

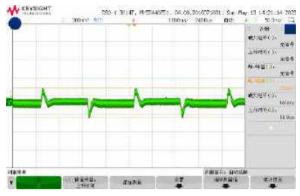

Parameter	Min.	Тур.	Max.	Units	Remarks	
Absolute maximum rati	ngs					
Operating ambient						
temperature	-40	-	+50	°C		
Shell ambient						
temperature	-40	-	80	°C		
Storage temperature	-55	-	100	°C		
Operating humidity	5	-	95	%	Non-condensing	
Atmospheric pressure	62	-	106	Кра		
Altitude	-	-	4000	m		
Cooling way	-	-	-		Natural cooling	
Input characteristics		1	1			
Input voltage	18	60/72	90	V	-	
Max. input voltage	-	-	90	V	Continuous	
Undervoltage shutdown	14.7	14.9	15.2	V	Automatic recovery	
Undervoltage recovery	16.5	16.7	16.9	V	Automatic recovery	
Max. input current	-	-	16.2	Α	Vin =16V; Iout =20A	
No load current	_	81	120	mA	Vin =72V	
Positive electrode cable	14	-	-	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	14	-	-	AWG	recommended to use a thicker wire diameter.	
Enable PIN cable	/	-	-	AWG	If the product has this feature	
Fuse	-	20	-	Α	Input positive has built-in fuse	
Output characteristics		1	1			
Efficiency	-	93.5	-	%	Vin =72V; Iout =20A	
Output voltage	11.9	12.0	12.2	V	Vin =72V; Iout =20A	
Regulator accuracy	-	±2	-	%		
Voltage regulation	-	±2	-	%		
Load Regulation	-	±2	-	%		
Overvoltage protection	-		-	V	@25°C, TVS clamp protection	
Output current	0	-	20	А		
Overcurrent protection	-	32	35	А	Vin=72V	
External capacitance	-	-	-	μF	Don't need	
	-	133	300	mVp-p	Vin =30-90V; Iout=20A,	
Output ripple and noise					Oscilloscope bandwidth: 20 MHz	
Output voltage rise time	-	65	80	mS		
Boot delay time	-	93	120	mS		
Out voltage overshoot	-	1	2	%	Vin =72V, 50%-75% Load step	
Over temperature						
protection	-	-	100	°C	Shell temperature, @ 100°C Restore working	
Chart circuit protection			-		Long-term (4 hours) short circuit is not	
Short circuit protection	-	YES			damaged, Hiccup mode	
Positive electrode cable	14	-	-	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	14	-	-	AWG	recommended to use a thicker wire diameter.	

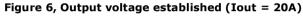
Safety and EMC features					
Anti-electric Strength	Input to Output	-	V		
	Input to Shell	≥500	V	Leakage current \leq 3.5mA, 1min,	
	Output to Shell	≥500	V	no breakdown, no arcing	
	Input to Output		MΩ		
Insulation resistance	Input to Shell	≥10		Test voltage = 500V	
	Output to Shell				
Other characteristics					
Weight	≤ 290		g		
Package	White box				
MTBF	≥200,000		Н	Vin= 72V; Iout= 20A	
Switching frequency	100±10		KHz		


Characteristic Curves

Conditions: TA = 25°C (77°F), Vin = 72V, Vout = 12V, unless otherwise specified.


Figure 1, Efficiency


Figure 3, Input V-I, Iout=20A



Typical Waveforms

Conditions: TA = 25° C (77° F), Vin = 72V, unless otherwise specified.

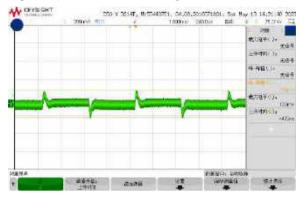

Figure 4, 25% - 50% load dynamic

Figure 5, 50% - 75% load dynamic

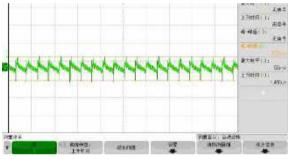
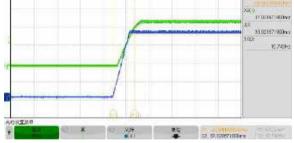
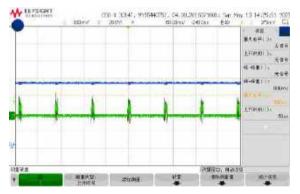
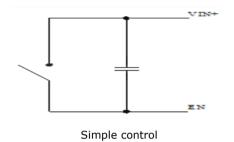
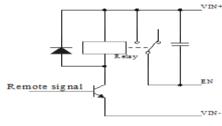


Figure 8, Boot delay time (Iout = 20A)


Figure 9, Short circuit & Out voltage (Iout = 20A)

Feature Description					
Remote On/Off (EN) (Optional)					
Logic Enable	Low level (0 - 18Vdc)	High level (18-90Vdc)	Left open		
Positive logic	Off	On	Off		

Various circuits for driving the EN

Transistor control

Input Undervoltage Protection

The converter will shut down after the input voltage drops below the under-voltage protection threshold for shutdown. The converter will start to work again after the input voltage reaches the input under voltage protection threshold for startup. For the Hysteresis, see the Protection characteristics.

Output Overcurrent Protection

The converter equipped with current limiting circuitry can provide protection from an output overload or short circuit condition. If the output current exceeds the output overcurrent protection set point, the converter enters hiccup mode. When the fault condition is removed, the converter will automatically restart.

Overtemperature Protection

A temperature sensor on the converter senses the average temperature of the module. It protects the converter from being damaged at high temperatures. When the temperature exceeds the over temperature protection threshold, the output will shut down. It will allow the converter to turn on again when the temperature of the sensed location falls by the value of Over temperature Protection Hysteresis

Wiring Instructions

The input and output of this product is terminals. The user should ensure that the input and output wires and terminals are connected reliably, and pay attention to the wire diameter to meet the requirements of the power supply current. If the cable to be used is long, it needs Considering the voltage drop of the wire, if the voltage drop is too large, the voltage output at the load end may not meet the load demand. In this case, consider using a thicker wire diameter or reducing the length of the wire. Generally, if long wiring is required. Long line should be used on the side where the current is relatively small. For example, this product is a step-down product, so long lines should be used on the input side.

Thermal Consideration

Sufficient airflow should be provided to help ensure reliable operating of the RW-992

Therefore, thermal components are mounted on the top surface of the RW-992 to dissipate heat to the surrounding environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the temperature at the middle of the base plate.

